3.8.33 \(\int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [733]

3.8.33.1 Optimal result
3.8.33.2 Mathematica [A] (verified)
3.8.33.3 Rubi [A] (verified)
3.8.33.4 Maple [A] (verified)
3.8.33.5 Fricas [A] (verification not implemented)
3.8.33.6 Sympy [F(-1)]
3.8.33.7 Maxima [B] (verification not implemented)
3.8.33.8 Giac [A] (verification not implemented)
3.8.33.9 Mupad [B] (verification not implemented)

3.8.33.1 Optimal result

Integrand size = 27, antiderivative size = 132 \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {7 \text {arctanh}(\cos (c+d x))}{16 a^2 d}+\frac {2 \cot ^5(c+d x)}{5 a^2 d}+\frac {5 \cot (c+d x) \csc (c+d x)}{16 a^2 d}-\frac {\cot ^3(c+d x) \csc (c+d x)}{4 a^2 d}+\frac {\cot (c+d x) \csc ^3(c+d x)}{8 a^2 d}-\frac {\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d} \]

output
-7/16*arctanh(cos(d*x+c))/a^2/d+2/5*cot(d*x+c)^5/a^2/d+5/16*cot(d*x+c)*csc 
(d*x+c)/a^2/d-1/4*cot(d*x+c)^3*csc(d*x+c)/a^2/d+1/8*cot(d*x+c)*csc(d*x+c)^ 
3/a^2/d-1/6*cot(d*x+c)^3*csc(d*x+c)^3/a^2/d
 
3.8.33.2 Mathematica [A] (verified)

Time = 2.56 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.10 \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\csc ^6(c+d x) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4 \left (3360 \left (-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin ^6(c+d x)+60 \cos (c+d x) (-11+32 \sin (c+d x))+6 \cos (5 (c+d x)) (45+32 \sin (c+d x))+10 \cos (3 (c+d x)) (-89+96 \sin (c+d x))\right )}{7680 a^2 d (1+\sin (c+d x))^2} \]

input
Integrate[(Cos[c + d*x]*Cot[c + d*x]^7)/(a + a*Sin[c + d*x])^2,x]
 
output
(Csc[c + d*x]^6*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4*(3360*(-Log[Cos[(c 
 + d*x)/2]] + Log[Sin[(c + d*x)/2]])*Sin[c + d*x]^6 + 60*Cos[c + d*x]*(-11 
 + 32*Sin[c + d*x]) + 6*Cos[5*(c + d*x)]*(45 + 32*Sin[c + d*x]) + 10*Cos[3 
*(c + d*x)]*(-89 + 96*Sin[c + d*x])))/(7680*a^2*d*(1 + Sin[c + d*x])^2)
 
3.8.33.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 3354, 3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a \sin (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^8}{\sin (c+d x)^7 (a \sin (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {\int \cot ^4(c+d x) \csc ^3(c+d x) (a-a \sin (c+d x))^2dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\cos (c+d x)^4 (a-a \sin (c+d x))^2}{\sin (c+d x)^7}dx}{a^4}\)

\(\Big \downarrow \) 3352

\(\displaystyle \frac {\int \left (a^2 \csc ^3(c+d x) \cot ^4(c+d x)-2 a^2 \csc ^2(c+d x) \cot ^4(c+d x)+a^2 \csc (c+d x) \cot ^4(c+d x)\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {7 a^2 \text {arctanh}(\cos (c+d x))}{16 d}+\frac {2 a^2 \cot ^5(c+d x)}{5 d}-\frac {a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}-\frac {a^2 \cot ^3(c+d x) \csc (c+d x)}{4 d}+\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{8 d}+\frac {5 a^2 \cot (c+d x) \csc (c+d x)}{16 d}}{a^4}\)

input
Int[(Cos[c + d*x]*Cot[c + d*x]^7)/(a + a*Sin[c + d*x])^2,x]
 
output
((-7*a^2*ArcTanh[Cos[c + d*x]])/(16*d) + (2*a^2*Cot[c + d*x]^5)/(5*d) + (5 
*a^2*Cot[c + d*x]*Csc[c + d*x])/(16*d) - (a^2*Cot[c + d*x]^3*Csc[c + d*x]) 
/(4*d) + (a^2*Cot[c + d*x]*Csc[c + d*x]^3)/(8*d) - (a^2*Cot[c + d*x]^3*Csc 
[c + d*x]^3)/(6*d))/a^4
 

3.8.33.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 
3.8.33.4 Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.32

method result size
parallelrisch \(\frac {-5 \left (\cot ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\cot ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-15 \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+120 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+255 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-255 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+840 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+240 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )-240 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1920 d \,a^{2}}\) \(174\)
derivativedivides \(\frac {\frac {\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6}-\frac {4 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {17 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}+28 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4}{5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {8}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {17}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{64 d \,a^{2}}\) \(176\)
default \(\frac {\frac {\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6}-\frac {4 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {17 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}+28 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4}{5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {8}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {17}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{64 d \,a^{2}}\) \(176\)
risch \(-\frac {-480 i {\mathrm e}^{10 i \left (d x +c \right )}+135 \,{\mathrm e}^{11 i \left (d x +c \right )}+480 i {\mathrm e}^{8 i \left (d x +c \right )}-445 \,{\mathrm e}^{9 i \left (d x +c \right )}-960 i {\mathrm e}^{6 i \left (d x +c \right )}-330 \,{\mathrm e}^{7 i \left (d x +c \right )}+960 i {\mathrm e}^{4 i \left (d x +c \right )}-330 \,{\mathrm e}^{5 i \left (d x +c \right )}-96 i {\mathrm e}^{2 i \left (d x +c \right )}-445 \,{\mathrm e}^{3 i \left (d x +c \right )}+96 i+135 \,{\mathrm e}^{i \left (d x +c \right )}}{120 d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{6}}-\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{16 d \,a^{2}}+\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{16 d \,a^{2}}\) \(192\)

input
int(cos(d*x+c)^8*csc(d*x+c)^7/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/1920*(-5*cot(1/2*d*x+1/2*c)^6+5*tan(1/2*d*x+1/2*c)^6+24*cot(1/2*d*x+1/2* 
c)^5-24*tan(1/2*d*x+1/2*c)^5-15*cot(1/2*d*x+1/2*c)^4+15*tan(1/2*d*x+1/2*c) 
^4-120*cot(1/2*d*x+1/2*c)^3+120*tan(1/2*d*x+1/2*c)^3+255*cot(1/2*d*x+1/2*c 
)^2-255*tan(1/2*d*x+1/2*c)^2+840*ln(tan(1/2*d*x+1/2*c))+240*cot(1/2*d*x+1/ 
2*c)-240*tan(1/2*d*x+1/2*c))/d/a^2
 
3.8.33.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.39 \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {192 \, \cos \left (d x + c\right )^{5} \sin \left (d x + c\right ) + 270 \, \cos \left (d x + c\right )^{5} - 560 \, \cos \left (d x + c\right )^{3} + 105 \, {\left (\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 105 \, {\left (\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 210 \, \cos \left (d x + c\right )}{480 \, {\left (a^{2} d \cos \left (d x + c\right )^{6} - 3 \, a^{2} d \cos \left (d x + c\right )^{4} + 3 \, a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )}} \]

input
integrate(cos(d*x+c)^8*csc(d*x+c)^7/(a+a*sin(d*x+c))^2,x, algorithm="frica 
s")
 
output
-1/480*(192*cos(d*x + c)^5*sin(d*x + c) + 270*cos(d*x + c)^5 - 560*cos(d*x 
 + c)^3 + 105*(cos(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*cos(d*x + c)^2 - 1)*l 
og(1/2*cos(d*x + c) + 1/2) - 105*(cos(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*co 
s(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2) + 210*cos(d*x + c))/(a^2*d* 
cos(d*x + c)^6 - 3*a^2*d*cos(d*x + c)^4 + 3*a^2*d*cos(d*x + c)^2 - a^2*d)
 
3.8.33.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**8*csc(d*x+c)**7/(a+a*sin(d*x+c))**2,x)
 
output
Timed out
 
3.8.33.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 275 vs. \(2 (120) = 240\).

Time = 0.21 (sec) , antiderivative size = 275, normalized size of antiderivative = 2.08 \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {\frac {240 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {255 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {120 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {15 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {24 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {5 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}}{a^{2}} - \frac {840 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} - \frac {{\left (\frac {24 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {15 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {120 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {255 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {240 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - 5\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{6}}{a^{2} \sin \left (d x + c\right )^{6}}}{1920 \, d} \]

input
integrate(cos(d*x+c)^8*csc(d*x+c)^7/(a+a*sin(d*x+c))^2,x, algorithm="maxim 
a")
 
output
-1/1920*((240*sin(d*x + c)/(cos(d*x + c) + 1) + 255*sin(d*x + c)^2/(cos(d* 
x + c) + 1)^2 - 120*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 15*sin(d*x + c)^ 
4/(cos(d*x + c) + 1)^4 + 24*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 5*sin(d* 
x + c)^6/(cos(d*x + c) + 1)^6)/a^2 - 840*log(sin(d*x + c)/(cos(d*x + c) + 
1))/a^2 - (24*sin(d*x + c)/(cos(d*x + c) + 1) - 15*sin(d*x + c)^2/(cos(d*x 
 + c) + 1)^2 - 120*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 255*sin(d*x + c)^ 
4/(cos(d*x + c) + 1)^4 + 240*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 5)*(cos 
(d*x + c) + 1)^6/(a^2*sin(d*x + c)^6))/d
 
3.8.33.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.63 \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {840 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{2}} - \frac {2058 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 240 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 255 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 120 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 5}{a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6}} + \frac {5 \, a^{10} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 24 \, a^{10} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 15 \, a^{10} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 120 \, a^{10} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 255 \, a^{10} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 240 \, a^{10} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{12}}}{1920 \, d} \]

input
integrate(cos(d*x+c)^8*csc(d*x+c)^7/(a+a*sin(d*x+c))^2,x, algorithm="giac" 
)
 
output
1/1920*(840*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 - (2058*tan(1/2*d*x + 1/2*c 
)^6 - 240*tan(1/2*d*x + 1/2*c)^5 - 255*tan(1/2*d*x + 1/2*c)^4 + 120*tan(1/ 
2*d*x + 1/2*c)^3 + 15*tan(1/2*d*x + 1/2*c)^2 - 24*tan(1/2*d*x + 1/2*c) + 5 
)/(a^2*tan(1/2*d*x + 1/2*c)^6) + (5*a^10*tan(1/2*d*x + 1/2*c)^6 - 24*a^10* 
tan(1/2*d*x + 1/2*c)^5 + 15*a^10*tan(1/2*d*x + 1/2*c)^4 + 120*a^10*tan(1/2 
*d*x + 1/2*c)^3 - 255*a^10*tan(1/2*d*x + 1/2*c)^2 - 240*a^10*tan(1/2*d*x + 
 1/2*c))/a^12)/d
 
3.8.33.9 Mupad [B] (verification not implemented)

Time = 10.84 (sec) , antiderivative size = 339, normalized size of antiderivative = 2.57 \[ \int \frac {\cos (c+d x) \cot ^7(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-5\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-24\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+24\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9-255\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-240\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+240\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+255\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+840\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{1920\,a^2\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6} \]

input
int(cos(c + d*x)^8/(sin(c + d*x)^7*(a + a*sin(c + d*x))^2),x)
 
output
(5*sin(c/2 + (d*x)/2)^12 - 5*cos(c/2 + (d*x)/2)^12 - 24*cos(c/2 + (d*x)/2) 
*sin(c/2 + (d*x)/2)^11 + 24*cos(c/2 + (d*x)/2)^11*sin(c/2 + (d*x)/2) + 15* 
cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^10 + 120*cos(c/2 + (d*x)/2)^3*sin( 
c/2 + (d*x)/2)^9 - 255*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^8 - 240*cos 
(c/2 + (d*x)/2)^5*sin(c/2 + (d*x)/2)^7 + 240*cos(c/2 + (d*x)/2)^7*sin(c/2 
+ (d*x)/2)^5 + 255*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^4 - 120*cos(c/2 
 + (d*x)/2)^9*sin(c/2 + (d*x)/2)^3 - 15*cos(c/2 + (d*x)/2)^10*sin(c/2 + (d 
*x)/2)^2 + 840*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(c/2 + (d*x)/ 
2)^6*sin(c/2 + (d*x)/2)^6)/(1920*a^2*d*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x 
)/2)^6)